A Polytope Calculus for Semisimple Groups

نویسنده

  • JARED E. ANDERSON
چکیده

We define a collection of polytopes associated to a semisimple group G. Weight multiplicities and tensor product multiplicities may be computed as the number of such polytopes fitting in a certain region. The polytopes are defined as moment map images of algebraic cycles discovered by I. Mirković and K. Vilonen. These cycles are a canonical basis for the intersection homology of (the closures of the strata of) the loop Grassmannian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Polytope Combinatorics for Semisimple Groups

Mirković and Vilonen discovered a canonical basis of algebraic cycles for the intersection homology of (the closures of the strata of) the loop Grassmannian. The moment map images of these varieties are a collection of polytopes, and they may be used to compute weight multiplicities and tensor product multiplicities for representations of a semisimple group. The polytopes are explicitly describ...

متن کامل

Decomposition of Symmetric Powers of Irreducible Representations of Semisimple Lie Algebras and the Brion Polytope

To any closed irreducible G-invariant cone in the space V of a finitedimensional representation of a semisimple Lie group there corresponds a convex polytope called the Brion polytope. This is closely connected with the action of the group G on the algebra of functions on the cone, and also with the moment map. In this paper we give a description of Brion polytopes for the spaces V themselves a...

متن کامل

Conformal Holonomy of Bi-invariant Metrics

We discuss in this paper the conformal geometry of bi-invariant metrics on compact semisimple Lie groups. For this purpose we develop a conformal Cartan calculus adapted to this problem. In particular, we derive an explicit formula for the holonomy algebra of the normal conformal Cartan connection of a bi-invariant metric. As an example, we apply this calculus to the group SO(4). Its conformal ...

متن کامل

Lax Constraints in Semisimple Lie Groups

Instead of studying Lax equations as such, a solution Z of a Lax equation is assumed to be given. Then Z is regarded as defining a constraint on a non-autonomous linear differential equation associated with the Lax equation. In generic cases, quadrature and sometimes algebraic formulae in terms of Z are then proved for solution x of the linear differential equation, and examples are given where...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003